18EC72

## Seventh Semester B.E. Degree Examination, July/August 2022 VLSI Design

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

1 a. Derive the expression for drain current in linear and saturation region for nmos transistor.
(10 Marks)
b. Implement the following circuits using CMOS logic
i) Inverter
ii) Pass transistor.
(10 Marks)

## OR

2 a. Explain the non ideal IV effect of MOSFET with respect to CMOS Channel length modulation and also explain Noise Margin with diagram and equations.
(10 Marks)
b. Implements the following circuits using CMOS logic
i) 2 input NAND gate
ii) Transmission gate.

10 Marks)

## Module-2

3 a. Describe with neat sketches the fabrication of P -well CMOS inyerter.
(08 Marks)
b. Explain the process of photolithography with a neat diagram in CMOS technologies.
(06 Marks)
c. Draw the stick diagram for the following CMOS logic
i) $Y=\overline{A+B+C}$
ii) 2 input NAND gate.
(06 Marks)

## OR

4 a. Explain the layout Design Rules for MOS process with two metal layers.
(06 Marks)
b. Draw the stick diagram for the CMOS logic $\mathrm{Y}=\overline{(\mathrm{A}+\mathrm{B}+\mathrm{C}) \mathrm{D}}$ and estimate the cell area.
(06 Marks)
c. Define scaling. Explain the constant voltage scaling and the effect of scaling on device characteristics.
(08 Marks)

## Module-3

5 a. Explain with a waveform the propagation Delay, Rise times and Fall Times of a CMOS inverter.
(08 Marks)
b. Derive the equation of propagation Delay using RC Delay Model for a $1^{\text {st }}$ order system.
(06 Marks)
c. Compute the Elmore Delay for $\mathrm{V}_{\text {out }}$ in the $2^{\text {nd }}$ order RC system.
(06 Marks)


OR
6 a. Explain Parasitic Delay of common gates in Linear Delay Model.
(08 Marks)
b. Design a circuit to compute $\mathrm{F}=\mathrm{AB}+\mathrm{CD}$ using NAND and NOR by Bubble pushing.
(06 Marks)
c. Calculate the minimum delay in C to compute $\mathrm{F}=\mathrm{AB}+\mathrm{CD}$ using the circuits with NAND and NOR gates and with AOI gates. Each input can present a maximum of $20 \lambda$ of transistor width. The output must derive a load equivalent to $100 \lambda$ of transistor width. Choose transistor sizes to achieve this delay.
(06 Marks)

## Module-4

7 a. Explain Resettable Latches and FlipFlops using CMOs transmission Gate.
(10 Marks)
b. Explain the Multistage pass transistor logic driven by two non overlapping clocks. (10 Marks)

## OR

8 a. Explain conventional CMOs flipflops with neat diagrams.
(10 Marks)
b. Explain Domino CMOS Logic.

## Module-5

9 a. Explain the operation of three transistor dynamic RAM cell.
(10 Marks)
b. Explain Full CMOS static RAM cell with schematic diagram.

10 a. Write short notes on :
i) Built in Self Test (BIST)
ii) Scan Design Technology
(10 Marks)
b. Explain briefly logic verification principle with a block diagram.

